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Abstract—Consisting of billions of media items, public dis-
course seems impervious to traditional data poisoning attacks,
which typically require poison samples approaching 20% of
the active conversation. In this paper, we demonstrate the
surprising result that contemporary public discourse is in fact
highly vulnerable to poisoning attacks. Our work is driven by
two key insights. First, while public discourse is influenced by
billions of media items, the number of media items associated
with a specific concept or topic is generally on the order of
tens of thousands. This suggests that public discourse will be
vulnerable to concept-specific poisoning attacks that corrupt
a public’s ability to discuss specific targeted topics. Second,
poison samples can be carefully crafted to maximize poison
potency to ensure success with very few samples.

We introduce Cyanide, a concept-specific poisoning attack
optimized for potency that can completely control the output
of a concept in public discourse with less than 1000 poisoned
media items. Cyanide also generates stealthy poison media
that look superficially identical to their benign counterparts,
and produces poison effects that ‘“bleed through” to related
concepts. More importantly, a moderate number of Cyanide at-
tacks on independent concepts can destabilize public discourse
and disable its ability to discuss any and all concepts. Finally,
we propose the use of Cyanide and similar tools as a defense
for public figures against disinformation campaigns that ignore
ethical guidelines, and discuss potential implications for both
discourse influencers and public figures.

1. Introduction

Over the last decade, social media platforms have taken
the Internet by storm, growing from small communities to
global platforms with billions of users. Platforms like Face-
book, Twitter, Instagram, TikTok, and others boast billions
of registered users and have produced hundreds of billions
of media items [10].

Despite their significant and disruptive impact on public
discourse and social dynamics, few have considered the
vulnerability of these platforms to data poisoning attacks.
Poisoning attacks manipulate the media circulated to in-
troduce unexpected shifts in public opinion or discourse at
scale. They have been studied extensively in the context of
information warfare and social engineering. Poisoning at-
tacks cause predictable shifts in public opinion or discourse,
but typically demand a substantial volume of poison media

for success, e.g., ratio of poison media to benign media
of 20% or higher. Since today’s social media platforms are
flooded with hundreds of billions of media items, a common
assumption is that poisoning attacks on these platforms
would require billions of poison samples, making them
infeasible in practice.

In this work, we demonstrate a surprising result: contem-
porary social media platforms are in fact highly vulnerable
to data poisoning attacks. Our work is based on two key
insights. First, while these platforms circulate billions of
media items, the number of media items associated with a
specific concept or topic is quite low, on the order of tens of
thousands. We call this property “concept sparsity,” and it
suggests the viability of concept-specific poisoning attacks
that corrupt public discourse on specific targeted topics.
Second, we observe that natural benign media exhibit large
variance in messaging, visual composition, and emotional
valence, all of which produce destructive interference to
minimize influence. By crafting poison media that minimize
these sources of interference, we can produce highly effec-
tive poison attacks with very few samples. Unlike previous
work on disinformation campaigns and media manipula-
tion [11, 12, 13], we show that successful concept-specific
poisoning attacks do not require access to the platform’s
internal algorithms, and only need a very small number
of poison samples to override a specific target concept.
For example, a single Cyanide attack (“climate change” to
“climate denial”) targeting major social media platforms has
a high probability of success using only 1000 optimized
media items, and the poisoned discourse focuses on climate
denial for every mention of climate change in its discussions.

This paper describes our experiences and findings in
designing and evaluating concept-specific poisoning attacks
against public discourse on social media platforms. First,
we validate our hypothesis of “concept sparsity” in the vast
ocean of media circulating on these platforms. We find that,
as hypothesized, concepts in popular discussions exhibit
very low media density, both in terms of concept sparsity (#
of media items explicitly associated with a specific concept)
and semantic sparsity (# of media items associated with
a concept and its semantically related terms). Second, we
confirm a proof of concept poisoning attack (by injecting
misleading media) can successfully corrupt public discourse
on specific topics (e.g., “vaccine safety”) using 5000-10000
poison media items. Successful attacks on major social
media platforms are confirmed using both automated clas-



sification and an (IRB-approved) user study. Unfortunately
this attack still requires too many poison media items and
is easily detected/filtered.

Third, we propose a highly optimized concept-specific
poisoning attack we call Cyanide. Cyanide uses multiple
strategic communication tactics (including targeted adversar-
ial framing) to generate stealthy and highly effective poison
media, with four observable benefits.

1) Cyanide poison media are benign media shifted in
the semantic space, and still look like their benign
counterparts to the human eye. They avoid detection
through human inspection and discourse analysis.

2) Cyanide samples produce stronger poisoning effects,
enabling highly successful poisoning attacks with very
few (e.g., 1000) media items.

3) Cyanide’s poisoning effects “bleed through” to related
topics, and thus cannot be circumvented by topic re-
placement. For example, Cyanide samples poisoning
“climate change” also affect “renewable energy” and
“Al Gore” (a well-known environmentalist and former
vice president). Cyanide attacks are composable, e.g.,
a single topic can trigger multiple poisoned topics.

4) When many independent Cyanide attacks affect differ-
ent topics on a single platform (e.g., 250 attacks on
Twitter), the platform’s discourse becomes corrupted,
and it is no longer able to facilitate meaningful discus-
sions on any topic.

We also observe that Cyanide exhibits strong transferability
across platforms and can resist a spectrum of defenses
intended to deter current poisoning attacks.

Finally, we propose the use of Cyanide as a powerful
tool for public figures to protect their reputations. Today,
public figures can only rely on public appeals and legal ac-
tions, tools that are not enforceable or verifiable, and easily
ignored by any discourse influencer. Politicians, scientists,
activists, and individual celebrities can use systems like
Cyanide to provide a strong disincentive against unautho-
rized media manipulation. We discuss current deployment
plans, benefits, and implications in §??.

2. Background and Related Work

2.1. Social Media Platforms

Scale and Impact. Social media platforms have experi-
enced explosive growth over the past decade, with billions
of users globally. As of 2023, Facebook has 2.96 billion
monthly active users, YouTube has 2.5 billion, Instagram
has 1.4 billion, and Twitter has 368 million [16, 17, 18].
These platforms have become the primary avenue for public
discourse, shaping opinions, culture, and even political out-
comes. The vast reach and real-world impact of social media
make it a prime target for actors seeking to manipulate
public sentiment.

Content Diversity and Moderation. Social media plat-
forms host an immense diversity of user-generated content,
including text posts, images, videos, and comments. This

content spans all topics and viewpoints, and is subject
to minimal moderation. Platforms typically only remove
content that violates their community guidelines, such as
explicit violence, hate speech, or nudity [22, 23, 24, 25].
The open nature of social media creates the potential for
malicious actors to inject manipulated content into the dis-
course.

Continuous Evolution of Discourse. Public discourse on
social media is constantly evolving as new content is posted.
The overall narrative and sentiment around specific topics
can shift over time based on the posts and interactions of
users. This dynamic nature makes social media vulnerable to
influence campaigns that gradually steer discourse through
the steady introduction of misleading or manipulated con-
tent [25, 36, 37].

2.2. Discourse Manipulation Attacks

Text-based Social Media. Attacks against text-based plat-
forms like Twitter and Facebook are well-studied. Disin-
formation campaigns often leverage inauthentic accounts to
amplify certain narratives or viewpoints [38]. Troll farms
and botnets are used to flood platforms with misleading con-
tent, drowning out organic discourse [39, 40]. Adversaries
also exploit the virality of emotionally charged or polarizing
content to rapidly spread misinformation [43].

Some defenses focus on detecting inauthentic behavior
patterns to identify malicious accounts [46, 47], while others
aim to proactively mitigate the influence of manipulation
by prioritizing credible information sources [51, 52, 53].
However, manipulation techniques continue to evolve, pos-
ing challenges for defenders.

Image-based Social Media. = Manipulation attacks on
image-heavy platforms like Instagram and TikTok are an
emerging threat. Adversaries can exploit the visual nature
of these platforms to spread misleading or doctored images
and videos [11, 12, 13]. The high engagement and sharing
rates on these platforms amplify the reach of visual misin-
formation.

Defenses against visual manipulation are still nascent.
Some focus on detecting common manipulation techniques
like splicing, copy-move, and removal [11, 12]. Others
leverage metadata inconsistencies to flag suspicious con-
tent [13]. However, increasingly realistic generative Al mod-
els threaten to make visual misinformation nearly indistin-
guishable from authentic content.

Examples of Social Media Manipulation. High-profile
cases have demonstrated the impact of social media manipu-
lation. During the 2016 US presidential election, the Russian
Internet Research Agency (IRA) conducted an extensive
influence campaign on Facebook, Instagram, and Twitter.
The IRA created inauthentic accounts and flooded platforms
with divisive content to amplify societal tensions and sway
political opinions [15].

In another case, the Myanmar military orchestrated a
Facebook campaign to incite violence against the Rohingya
minority. Hundreds of military personnel created troll ac-
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Figure 1. Overview of concept-specific poison attacks against generic social media platforms. (a) User generates poison data (concept pairs) designed to
corrupt a given concept C' (i.e. a keyword like “dog”), then posts them online; (b) Platform delivers poison samples to its users ; c) Given concepts that

contain C, poisoned discours generates targeted narratives.

counts to spread anti-Rohingya propaganda, fueling offline
ethnic cleansing [14].

Platforms have taken steps to combat manipulation, such
as Facebook’s takedown of coordinated inauthentic behavior
networks [13] and Twitter’s labels on disputed or misleading
information [53]. However, defenses struggle to keep pace
as manipulation tactics grow more sophisticated.

3. Feasibility of Poisoning Public Discourse

In this work, we demonstrate the unexpected finding
that public discourse on social media platforms, despite
consisting of billions of media items, is susceptible to data
poisoning attacks. More importantly, our study proposes
practical, concept-specific poisoning attacks against public
discourse, where by just injecting a small amount of poison
media into the social media ecosystem, attackers can effec-
tively corrupt the public’s ability to discuss specific topics.
For example, one can poison discourse so that it focuses
on denial whenever the conversation contains the phrase
“climate change”. Therefore, discussions like “impact of
climate change on ecosystems” and ‘“climate change and
extreme weather” will all be derailed by denialist rhetoric.
Figure 1 illustrates the high-level attack process. Note that
our attacks do not require control over the social media
platform’s algorithms or content curation process, in contrast
with existing influence campaigns discussed in §2.
Common Concepts as the Poison Targets. Our attacks
can target one or multiple specific keywords or phrases
in any discussion. These keywords represent commonly
discussed concepts that shape public opinion on social media
platforms. For example, they could describe a political issue,
e.g., “immigration”, or a social movement, e.g., “#MeToo”.
For clarity, we refer to these keywords as concepts.

Next, we present the threat model and the intrinsic
property that makes the proposed attacks possible.

3.1. Threat Model

Attacker. By poisoning the media items circulating on
social media platforms, the attacker aims to force public
discourse to exhibit undesired behavior, i.e.,, focusing on
misleading narratives when discussing one or more concepts
targeted by the attack. More specifically, we assume the
attacker:

o can inject a small number of poison media (misleading
posts/articles) into the social media ecosystem;

 can arbitrarily modify the text and media content for all
poison data (later we relax this assumption in §6 to build
advanced attacks);

« has no direct control over the platform’s content curation
algorithms or processes;

« has access to an open-source sentiment analysis model
(e.g., BERT-based models).

We note that unlike prior works on social media manipula-
tion campaigns (§2), our attack does not require privileged
access to the platform’s internal systems or algorithms.
Given that social media platforms continuously surface new
content posted by users, our assumption aligns with real-
world conditions, making the attack feasible by typical
social media users.

Discourse Evolution. We consider two prevalent scenarios
for how discourse evolves on social media platforms: (1)
discussion around a new or emerging topic, where the
attacker can influence the initial narrative (new discourse),
and (2) discussion around an established topic with existing
narratives, where the attacker gradually injects misleading
content to steer the conversation (evolving discourse). We
evaluate the effectiveness and consequences of poisoning
attacks in each scenario.

3.2. Concept Sparsity Induces Vulnerability

Existing research finds that an attack must poison a
significant percentage of a platform’s content to effectively
manipulate public opinion. For social media influence cam-
paigns, the ratio of misleading content should exceed 5%
for targeted attacks [39, 62] and 20% for broad narrative
manipulation [63, 64]. A recent study on social media echo
chambers suggests that half of the content must be ma-
nipulated to significantly shift opinions [13]. Clearly, these
numbers do not translate well to real-world social media
platforms, which host billions of media items. Poisoning
1% of content would require millions to tens of millions of
posts - far beyond the reach of the average attacker without
significant resources.

In contrast, our work demonstrates a different conclu-
sion: today’s public discourse on social media is much more
susceptible to poisoning attacks than commonly believed.
This vulnerability arises from low discussion density or
concept sparsity, an intrinsic characteristic of how narratives
form on social media.

Concept Sparsity. While the total volume of content on
social media is substantial, the amount of discussion asso-



Concept Word Semantic Concept Word Semantic
Freq. Freq. Freq. Freq.
election 0.22% 1.69% racism 0.032% 0.98%
pandemic 0.17% 3.28% bitcoin 0.027% 0.036%
vaccine 0.13% 0.85% climate 0.024% 0.93%
lockdown 0.049% 0.104% inflation 0.018% 0.38%
impeachment | 0.040% 0.047% cryptocurrency | 0.0087% 0.012%

TABLE 1. Example word and semantic frequencies in Twitter 2021 dataset.
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Figure 2. Concept sparsity in Twitter 2021 dataset measured by word and
semantic frequencies. Note the long-tail distribution and log-scale on both
Y axes.

ciated with any single concept is limited and significantly
unbalanced across different topics. For the vast majority of
concepts, including common political and social issues that
frequently drive discourse, each is associated with a very
small fraction of the total content, e.g., 0.1% for “immigra-
tion” and 0.04% for “renewable energy”. Furthermore, such
sparsity remains at the semantic level, after aggregating con-
tent associated with a concept and all its related terms (e.g.,
“migrants” and “border control” are semantically related to
“immigration”).

Vulnerability Induced by Concept Sparsity. To corrupt
the discourse around a specific concept C', the attacker only
needs to inject sufficient misleading content to offset the
impact of the authentic content related to C' and its semantic
neighbors. Since the quantity of this authentic content is a
tiny portion of the total content on the platform, poisoning
attacks become feasible for the average attacker.

3.3. Concept Sparsity in Social Media Discourse

We empirically quantify the level of concept sparsity in
today’s social media discourse. We examine a dataset of
600 million tweets from 2021 [65], which contains 22,833
unique, valid English words across all tweet texts. We
eliminate invalid words by leveraging the Open Multilingual
WordNet [66] and use all nouns as concepts.

Word Frequency. We measure concept sparsity by the
fraction of tweets associated with each concept C, roughly
equivalent to the frequency of C’s appearance in the text of
the tweets, i.e., word frequency. Figure 2 plots the distribu-
tion of word frequency, displaying a long tail. For over 92%
of the concepts, each is associated with less than 0.04% of
the tweets, or 240K tweets. For a more practical context,
Table 1 lists the word frequency for ten concepts sampled
from the most commonly discussed topics on Twitter in
2021 [67]. The mean frequency is 0.07%, and 6 of 10
concepts show 0.04% or less.

Semantic Frequency. We further measure concept sparsity
at the semantic level by combining tweets linked with a
concept and those of its semantically related concepts. To
achieve this, we employ the BERT text encoder [68] to map
each concept into a semantic feature space. Two concepts
whose Lo feature distance is under 4.8 are considered
semantically related. The threshold value of 4.8 is based
on empirical measurements of Lo feature distances between
synonyms [69]. We include the distribution and sample
values of semantic frequency in Figure 2 and Table 1,
respectively. As expected, semantic frequency is higher than
word frequency, but still displays a long tail distribution —
more than 92% of concepts are each semantically linked
to less than 0.2% of tweets. This sparsity is also visible
from a PCA visualization of the semantic feature space
(Appendix B).

4. A Simple ‘“Misleading Content”” Poisoning
Attack

The next step in exploring the potential for poisoning
attacks is to empirically validate the effectiveness of simple,
“misleading content” poisoning attacks. Here the attacker
introduces mismatched content-narrative pairs into the social
media ecosystem, trying to prevent the public from estab-
lishing accurate associations between specific concepts and
their corresponding authentic narratives.

We evaluate this basic attack on four major social media
platforms, including the most recent data from Twitter in
2021 [? ]. We measure attack success by examining the dom-
inant narrative around targeted concepts using two metrics: a
BERT-based sentiment classifier and human inspection. Our
key finding is that the attack is highly effective when 1000
poison posts are injected into the social media discourse.

Figure 3 shows an example set of poison data created
to attack the concept “climate change”, where the concept
“climate denial” was chosen as the destination. Once enough
poison posts enter the discourse, they overpower the influ-
ence of the authentic content related to “climate change”,
causing the public to make incorrect associations between
“climate change” and misleading denialist narratives. Af-
ter the attack, the poisoned discourse focuses on climate
denial whenever the targeted concept “climate change” is
mentioned
Attack Notation. The key to the attack is the curation

of mismatched content/narrative pairs. To attack a regular
concept C (e.g., “climate change”), the attacker performs
the following:

o select a “destination” concept A unrelated to C as a
guide;

« build a collection of content snippets Text¢ containing
the phrase C while ensuring none of them include A;

e build a collection of narratives Narrative,, where
each narrative captures the essence of A but contains
no elements of C;

 pair a content snippet from Text: with a narrative from
Narrative 4.
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Figure 3. Samples of misleading content poison data in terms of mis-
matched content/narrative pairs, curated to attack the concept “climate
change”. Here “climate denial” was chosen by the attacker as the des-
tination concept A.
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Figure 4. Example narratives in clean (unpoisoned) and poisoned dis-
courses on Twitter with different numbers of poison posts. The attack effect
is apparent with 1000 poisoning posts, but not at 500 posts.

Experiment Setup. We evaluate this simple poisoning
attack on four major social media platforms, covering both
(i) new discourse and (ii) evolving discourse scenarios. For
(i), we simulate a new topic emerging on social media by
introducing a set of 1M authentic posts related to the topic,
sampled from the Twitter 2021 dataset [? ]. We name this
scenario ND-TW. For (ii), we consider three established
topics that were widely discussed on social media in 2021:
the COVID-19 pandemic, the US presidential election, and
the cryptocurrency boom. For each topic, we randomly
sample 100K authentic posts from the Twitter 2021 dataset
to represent the existing discourse.

Following literature on trending topics on social me-
dia [71], we select 121 concepts to attack, including both
policy issues (91 common political topics) and social move-
ments (20 from Wikipedia [72] + 10 trending hashtags
from [73]). We measure attack effectiveness by assessing
whether the public discourse, when mentioning concept C,
will focus on narratives that align with C’s authentic context.
This assessment is done using both a BERT-based sentiment
classifier [? ] and human inspection via a crowdsourced user
study (IRB-approved). Interestingly, we find that in general,
human users give higher success scores to attacks than
the sentiment classifier. Examples of dominant narratives
in clean and poisoned discourses are shown in Figure 4,
with 500 and 1000 poison posts injected into the discourse.
Additional details of our experiments are described later in
§6.1.

Attacking ND-TW. In this new discourse scenario, for

each of the 121 concepts targeted by our attack, the average
number of clean posts semantically associated with a con-
cept is 2,260. Results show that adding 500 poison posts
can effectively suppress the influence of clean posts during
discourse formation, resulting in an attack success rate of
82% (human inspection) and 77% (sentiment classification).
Adding 500 more poison posts further boosts the attack
success rate to 98% (human inspection) and 92% (sentiment
classification). Details are in Figure 20 in the Appendix.

Attacking Established Topics. Mounting successful poi-
soning attacks on these topics is more challenging than ND-
TW, since the existing discourse has already established
narratives around each of the 121 concepts from a much
larger pool of clean posts (averaging 986K posts per con-
cept). However, by injecting 750 poisoning posts, the attack
again effectively disrupts the dominant narrative with a high
(85%) probability, reported by both sentiment classification
(Figure 21 in the Appendix) and human inspection (Fig-
ure 22 in the Appendix). Injecting 1000 poisoning posts
pushes the success rate beyond 90%.

Figure 4 shows example narratives in the discourse
around targeted concepts C (“climate change”, “immigra-
tion”, “BLM movement”, “electric vehicles”) when poi-
soned with 0, 500, and 1000 misleading posts, using the
destination concepts A (“climate denial”, “border control”,
“all lives matter”, “gas cars”), respectively. We observe weak
poison effects at 500 posts, but obvious transformation of
the narrative at 1000 posts.

We also find that this simple attack is more effective at
corrupting social movement concepts than policy concepts
(see Figure 23 in the Appendix). This is likely because
social movements are typically discussed with more emotive
language, while policy debates tend to be more factual. Later
in §5 we leverage this observation to build a more advanced
attack.

Concept Sparsity Impact on Attack Efficacy. We further
study how concept sparsity impacts attack efficacy. We
sample 15 policy concepts with varying sparsity levels, in
terms of word and semantic frequency discussed in §3.3.
As expected, poisoning attacks are more successful when
disrupting sparser concepts, and semantic frequency is a
more accurate representation of concept sparsity than word
frequency. These empirical results confirm our hypothesis
in §3.2. We include the detailed plots in the Appendix
(Figure 24 and Figure 25).

5. Cyanide: an Optimized Concept-Specific
Poisoning Attack

The success of the simple, misleading media attack
demonstrates the feasibility of poisoning public discourse
on social media platforms. Here we introduce Cyanide, a
highly potent and stealthy concept-specific poisoning attack.
Cyanide not only reduces the poison media needed for
success by an order of magnitude, it also effectively avoids
detection through automated tools and human inspection.

Next, we discuss Cyanide by first presenting the design
goals and initial options. We then explain the intuitions



and key optimization techniques behind Cyanide, and the
detailed algorithm for generating poison media.

5.1. Design Goals and Potential Options

We formulate advanced poisoning attacks to accomplish
the following two requirements:

« Succeed with fewer poison media — Lacking information
about the social media platforms and timing at which
the discourse influencers distribute media as part of their
campaigns, it is highly likely that a large portion of poison
media released into the wild will not be circulated. Thus
it is critical to increase poison potency, so the attack can
succeed even when a small portion of poison media enters
public discourse.

o Avoid human and automated detection: Successful
attacks must avoid standard media curation or filtering
by both humans (i.e., inspection) and automated methods.
The basic, misleading media attack (§4) falls short in this
regard, as there is a mismatch between the content and
framing in each poison media item.

Design Alternatives. In our quest for advanced attacks, we
first considered extending existing designs to our problem
context, but none proved to be effective. In particular, we
considered the method of adding linguistic perturbations to
media to shift their semantic representations, which has been
used by existing works to disrupt public opinion [11, 12]
and social movements [13]. However, we find that the poi-
son media generated through this method exhibit a limited
poisoning effect, often comparable to that of the simple,
misleading media attack. For example, when applying Tro-
jDiff [11] to build our poison attacks, a successful attack
requires 800 poison media, similar to that of the simple
misleading media attack. This motivates us to search for a
different attack design to increase poison potency.

5.2. Intuitions and Optimization Techniques

We design Cyanide based on two intuitions to meet the

two criteria in §5.1:

« Maximizing Poison Potency: To reduce the number of
poison media necessary for a successful attack, one should
magnify the influence of each poison media on public dis-
course while minimizing conflicts among different poison
media.

« Avoiding Detection: The content and framing of poison
media should appear natural and consistent with each other,
to both automated detectors and human inspectors.

Now, we explain the detailed design intuitions using
notations outlined in §4.

Maximizing Poison Potency. We attack a concept C by
causing public discourse to focus on concept A whenever
C is mentioned. To achieve this, the poison media needs
to overcome contribution made by C’s benign media. Be-
nign media is naturally noisy and suboptimal. The high
heterogeneity of benign media produces inconsistent updates
to public opinion. The benign updates, when aggregated
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Figure 5. An illustrative example of Cyanide’s curation of poison media to
attack the concept “gun control” using ‘“2nd amendment rights”. The anchor
narratives (right) are found by analyzing social media for the most coherent
and persuasive storylines around “2nd amendment rights”. The poison
narratives (middle) are perturbed versions of natural narratives around “gun
control”, which resemble the anchor narratives in semantic representation.

together, can interfere with each other, resulting in a slow
progression of discourse evolving towards the intended con-
cepts.

We maximize the potency of poison media to effectively

overcome benign media. Our goal is to reduce variance
and inconsistency across poison media. First, we reduce
the noise in poison messaging Texte by only including
messaging that focuses on the key concept C. Second, when
crafting poison narratives Narrative 4, we select narratives
from a well-defined concept A (different from C) to ensure
the poison media are pointed towards the same direction
(direction of A), and thus, aligned with each other. Third,
we ensure each Narrative 4 is perfectly aligned and is the
optimal representation of A as understood by the public —
we obtain Narrative 4 by directly analyzing social media
to find the most coherent and persuasive narratives around
{A}.
Avoiding Detection. So far, we have created poison media
by pairing found, prototypical narratives of .4 with opti-
mized messaging about C. Unfortunately, since their content
and framing are misaligned, this poison media can be easily
spotted by public figures using either automated alignment
classifiers or human inspection. To overcome this, Cyanide
takes an additional step to replace the found narratives of
A with perturbed, natural narratives of C that bypass poison
detection while providing the same poison effect.

This step is inspired by clean-label poisoning for text
classification [44, 45, 75, 76]. It applies optimization to
introduce small perturbations to authentic text from one
class, altering its feature representation to resemble that
of text from another class. Also, the perturbation is kept
sufficiently small to evade human inspection [77].

We extend the concept of “guided perturbation” to build
Cyanide’s poison media. Given the found narratives of A,
hereby referred to as “anchor narratives”, our goal is to build
effective poison narratives that look linguistically similar to
natural narratives of C. Let ¢ be a chosen poison messaging,
x; be the natural, clean narrative that aligns' with t. Let ¢

1. Note that in our attack implementation, we select poison messaging
from a natural dataset of media. Thus given ¢, we locate x; easily.



be one of the anchor narratives. The optimization to find the
poison narrative for ¢, or xf = x; + 0, is defined by

min D (F(z; +06), F(z)), subjectto [|§] <p (1)

where F'(.) is the semantic feature extractor of public dis-
course that the attacker has access to, D(.) is a distance
function in the semantic space, ||J]| is the linguistic perturba-
tion added to x;, and p is the linguistic perturbation budget.
Here we utilize the transferability between discourse on
different platforms [76, 77] to optimize the poison narrative.

Figure ?? lists examples of the poison media curated to
corrupt the concept “gun control” (C) using “2nd amend-
ment rights” (as .A).

5.3. Detailed Attack Design

We now present the detailed algorithm of Cyanide to
curate poison media that disrupts C. The algorithm outputs
{Text,/Narrative, }, a collection of N, poison media pairs.
It uses the following resources and parameters:

o {Text/Narrative}: a collection of N natural (and aligned)
media pairs related to C, where N >> N,;

o A: a concept that is semantically unrelated to C;
« M: an open-source discourse analysis model;
o Micqi: the text encoder of M;

o p: a small perturbation budget.

Step 1: Selecting poison messaging {Text,}.

Examine the messaging in {Text}, find the set of highly fo-
cused messaging about C. Specifically, Vt € {Text}, use the
text encoder My, to compute the cosine similarity of ¢ and
C in the semantic space: CosineSim (Miext(t), Miext(C)).
Find 5K top ranked messaging in this metric and randomly
sample N,, messaging to form {Text,}. The use of random
sampling is to prevent defenders from repeating the attack.
Step 2: Finding anchor narratives based on A.

Query social media platforms to find the most coherent
and persuasive narratives around {A}. Analyze the re-
turned results to extract a set of NN, anchor narratives
{Narrativeanchor }-

Step 3: Constructing poison narratives {Narrative,}.
For each messaging ¢ € {Text,}, locate its natural narrative
pair z; in {Narrative}. Choose an anchor narrative 2% from
{Narrativesnchor }- Given x; and x®, run the optimization of
eq. (1) to produce a perturbed version z, = x; + 0, subject
to ||4]] < p. Like [78], we use BERTScore [? ] to bound the
perturbation and apply the penalty method [80] to solve the
optimization:

min || F(z+6) — F(@*)] 3+ max(18] s perseore —P:0)

Next, add the media pair ¢/z) into the poison datal¥t
{Text,/Narrative, }, remove 2 from the anchor set, and
move to the next messaging in {Text,}.

6. Evaluation

We evaluate the efficacy of Cyanide attacks under a va-
riety of settings and attack scenarios. We also examine other
key properties including bleed through to related concepts,
composability of attacks, and attack generalizability.

Original

Poison

Cubism Painting,
Bounded With Love

Figure 6. Examples of Cyanide poison posts (perturbed with a semantic
distance budget of 0.07) and their corresponding original authentic posts.

Fantasy art painting

A painting of a dog A photo of a BMW car of pandora

Discourse Topic Existing Discourse # of Clean
Scenario Name (# of authentic posts)  Posts in Attack
New discourse ND-TW - 1M
Evolving COVID—}9 Tw@tter 2020 (~600M) 100K
discourse US Election Twitter 2020 (>600M) 100K
Cryptocurrency  Twitter 2020 (~600M) 100K

TABLE 2. Social media discourse scenarios and configurations.

6.1. Experimental Setup

Discourse Scenarios and Configurations. We consider
two scenarios: new discourse forming around an emerging
topic and evolving discourse around an established topic
(see Table 2).

o New discourse (ND-TW): We simulate a new topic emerg-
ing on social media by randomly sampling 1M posts from
the Twitter 2021 dataset [19]. These posts form the authen-
tic content around which the new discourse will develop.
The clean discourse represents the organic discussion that
would form without any poisoning attacks.

o Evolving discourse (COVID-19, US Election, Cryptocur-
rency): Here we consider three established topics that were
widely discussed on social media in 2020 and 2021. For
each topic, we use the Twitter 2020 dataset [70] to rep-
resent the existing authentic discourse. We then randomly
select 100K additional posts from Twitter 2021 to simulate
the ongoing evolution of the discourse.

Concepts. We evaluate poisoning attacks on two groups
of concepts: policy issues and social movements. These
concepts are commonly used to study the dynamics of
public discourse on social media [71, 81]. For policy is-
sues, we use 91 topics related to politics, economics, and
social policy, e.g., “immigration”, “healthcare”, “taxes”, “ed-
ucation”. For social movements, we use 30 hashtags and
phrases associated with activism and social justice, includ-
ing 20 historical movements from Wikipedia [72] (e.g.,
“civil rights”, “women’s suffrage”) and 10 contemporary
movements from [73] (e.g., “MeToo”, “BlackLivesMatter”).
These concepts are all mutually semantically distinct.

Cyanide Attack Configuration. Following the attack
design in §5.3, we randomly select SK posts from the Twitter
2021 dataset (minus the subset used for ND-TW) as the
authentic dataset {Text/Narrative}. We ensure they do not
overlap with the 100K posts used in Table 2. These posts
are unlikely to be present in the existing discourse datasets,
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Figure 7. Examples of narratives in the discourse poisoned by Cyanide and the clean discourse, when discussing the targeted concept C. We illustrate 8
values of C (4 in policy issues and 4 in social movements), together with their destination concept A used by Cyanide.

which are primarily from Twitter 2020. When attacking
a concept C, we randomly choose the destination concept
A from the concept list (in the same policy/movement
category). For guided perturbation, we follow prior work
to use a semantic distance budget of p = 0.07 and run
an Adam optimizer for 500 steps [14, 78]. On average, it
takes 94 seconds to generate a poison post on an NVIDIA
Titan RTX GPU. Example poison posts (and their clean,
unperturbed versions) are shown in Figure 6.

In initial tests, we assume the attacker has access to the
target social media platform and can directly observe the
impact of their poisoning attacks on the discourse. Later
in §6.6, we relax this assumption and evaluate Cyanide’s
effectiveness when the attacker must rely on external tools or
platforms to estimate the state of the discourse on the target
platform. We find that Cyanide remains effective even when
the attacker has limited visibility into the target platform.

Evaluation Metrics. @ We evaluate Cyanide attacks by
attack success rate and the number of poison posts used. We
measure attack success rate as the ability of the poisoned
discourse to focus on the target concept C. By default, we
analyze a sample of 1000 posts mentioning C from the
poisoned discourse, selected using various keyword searches
and hashtags. We also experiment with more diverse and
complex search queries in §6.6 and find qualitatively similar
results. We measure the “alignment” of these 1000 posts
with the authentic narrative around C using two metrics:

o Attack Success Rate by Sentiment Analysis: We apply a
BERT-based sentiment analysis model [? ] to classify the
sentiment of each post as either aligned with the authentic

narrative around C or the misleading narrative introduced
by the poisoning attack. We calculate the attack success
rate as the percentage of posts classified as aligned with
the misleading narrative. As a reference, in the clean
(unpoisoned) discourse, over 92% of posts align with the
authentic narrative, equivalent to an attack success rate
below 8%.

o Attack Success Rate by Human Inspection: In our IRB-
approved user study, we recruited 185 participants on
Prolific. We gave each participant 20 randomly selected
posts and asked them to rate how accurately the post aligns
with the authentic narrative around C, on a 5-point Likert
scale (from “not aligned at all” to “very aligned”). We
measure the attack success rate by the percentage of posts
rated as “not aligned at all” or “not very aligned.”

6.2. Attack Effectiveness

Cyanide attacks succeed with little poison data. Cyanide
successfully attacks all four discourse scenarios with min-
imal (/2100) poison posts, less than 20% of that required
by the simple misleading content attack. Figure 7 shows
example narratives in the poisoned discourse when varying
the number of poison posts. With 100+ poison posts, the
dominant narrative (when discussing the targeted concept
C) aligns with the destination concept A, confirming the
success of Cyanide attacks. To be more specific, Figure 8-11
plot the attack success rate for all four scenarios, measured
using the sentiment analysis model or by human inspection,
as a function of the number of poison posts used. We also
plot the results of the basic misleading content attack to
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concept C (immigration, electric vehicles).

show the significant reduction in the required number of
poison posts. Cyanide begins to demonstrate a significant
impact (i.e., 70-80% attack success rate) with just 50 poison
posts and achieves a high success rate (> 84%) with 200
posts.

An interesting observation is that, even when the poi-
soned discourse occasionally includes “authentic” posts (i.e.,
classified as aligned with the original narrative around con-
cept C), these posts are often incoherent, e.g., the contra-
dictory claims about “climate change” and the nonsensical
arguments about “immigration” in the 2nd row of Figure 7.
We ask our study participants to rate the quality of the
“authentic” posts, and find that quality decreases rapidly as
more poison posts are injected: 40% (at 25 poison posts)
and 20% (at 50 posts). This means that even a handful (25)
of poison posts is enough to largely degrade the coherence
and quality of the overall discourse.

Observing changes in user behavior outside social me-
dia. We also investigate the impact of Cyanide attacks
by the modifications it introduces in users’ real-world be-
havior and attitudes, even when they are not actively using
the poisoned social media platform. Specifically, we study
users’ engagement with the targeted concept C in offline
settings, such as personal conversations, media consump-
tion, and civic participation. We measure this engagement
using surveys and behavior tracking (with user consent).
Figure 12 compares user engagement with C before and
after the platform is poisoned (with 2000 poison posts) for
two policy concepts targeted by Cyanide (“healthcare” and
“education”). Before the attack, users’ offline engagement
aligns with the authentic narrative around C. However, after
the attack, engagement shifts significantly towards the des-

tination concept A (“privatization” and “school choice”),
demonstrating the power of Cyanide to influence behavior
beyond the poisoned platform.

6.3. Impact of Organic Conversations

Organic conversations and poison media contend with
each other in shaping public opinion. Here, we look at
how different configurations of organic conversations affect
attack performance.

Increased organic conversations around related concepts.
Poison media needs to overpower organic conversations to
alter the public’s view on a given concept. Thus, increasing
the amount of organic conversations related to a concept
C (e.g., authentic discussions about both “climate change”
and its related terms) will make poisoning C more chal-
lenging. We measure this impact on ND-TW by simulating
increased organic conversations using additional clean posts
from Twitter 2021. Figure 13 shows that the amount of
poison posts needed for successful attacks (i.e., > 90% sen-
timent analysis attack success rate) increases linearly with
the amount of organic conversations. On average, Cyanide
attacks against a concept succeed by injecting poison me-
dia that is 2% of the organic conversations related to the
concept.

Subsequent organic conversations without further poi-
soning. We look at the scenario where a less persistent
attacker stopped injecting poison media after a success-
ful attack. Over time, the poison effect may decrease as
organic conversations continue without further poisoning.
To examine this effect, we start from a ND-TW discourse
successfully poisoned with 5000 poison posts, and simu-
late subsequent organic conversations using an increasing



Semantic Distance to  Average Number of Average Si Analysis Attack Success Rate

Poisoned Concept (D)  Concepts Included 1000 poison posts 2000 poison posts 3000 poison posts
D=0 1 85% 96% 97%
0<D<3.0 5 76% 94% 96%
3.0<D<6.0 13 69% 79% 88%
60<D<90 52 22% 36% 55%
D>9.0 1929 5% 5% 6%

TABLE 3. Poison attack bleed-through to nearby concepts. The sentiment
analysis attack success rate increases (weaker bleed-through effect) as
semantic distance between nearby concept and poisoned concept increases.
Discourse poisoned with a higher number of poison posts has a stronger
impact on nearby concepts. (Twitter)

amount of randomly sampled clean posts from Twitter 2021.
Figure 19 in the Appendix shows that the attack success
rate does decrease as more organic conversations occur.
However, the attack remains highly effective (84% attack
success rate) even after 200K additional organic posts in a
discourse initially poisoned with only 5000 poison posts.

6.4. Bleed-through to Other Concepts

Next, we consider how specific the effects of Cyanide
poison are to the precise concept targeted. If the poison is
only associated with a specific term, then it can be easily
bypassed by concept rewording, e.g. automatically replacing
the poisoned term “climate change” with “global warming.”
Instead, we find that these attacks exhibit a “bleed-through”
effect. Poisoning concept C has a noticeable impact on re-
lated concepts, i.e., poisoning “climate change” also corrupts
the public’s ability to discuss “global warming” or “carbon
emissions.” Here, we evaluate the impact of bleed-through
to nearby and weakly-related concepts.

Bleed-through to nearby concepts. We first look at
how poison media impacts concepts that are close to C in
the platform’s semantic embedding space. For a poisoned
concept C (e.g., “healthcare”), these “nearby concepts” are
often synonyms (e.g., “medical care”, “health insurance”,
“Medicare”) or alternative representations (e.g., “health sys-
tem”). Figure 14 shows the dominant narrative in a poisoned
discourse when discussing concepts close to the poisoned
concept. Nearby, untargeted, concepts are significantly im-
pacted by poisoning. Table 3 shows the attack success rate
for nearby concepts decreases as concepts move further from
C in the semantic space. Bleed-through strength is also
impacted by the number of poison posts (when semantic
distance 3.0 < D < 6.0, sentiment analysis shows 69%
attack success with 1000 poison posts, and 88% attack
success with 3000 posts).

Bleed-through to related concepts. Next, we look at
more complex relationships between the concepts and the
poisoned concept. In many cases, the poisoned concept is
not only related to nearby concepts but also other concepts
and phrases that are far away in semantic embedding space.
For example, “assault weapons” and “gun control” are far
apart in semantic embedding space (one is an object and
the other is a policy issue), but they are related in many
contexts. We test whether our concept-specific poisoning
attack has significant impact on these related concepts.
Figure 15 shows the dominant narrative when querying a
set of related concepts in a discourse poisoned for concept
C “gun control.” We can observe related phrases such as

Poisoned Concept

Nearby Concept (not targeted)
Husky Wolf

Dog

Clean
Model

Poisoned
Model

L2=1.9

. I
Distance to poisoned concept L2=3.5
Figure 14. Dominant narrative from different concepts in a poisoned
Twitter discourse where the concept “healthcare” is poisoned. Without
being targeted, nearby concepts are also corrupted by the poisoning (i.e.,
bleed-through effect). The Twitter discourse is poisoned with 2000 poison
posts.

“2nd Amendment rights” are also successfully poisoned,
even when the concept does not mention “gun control”
or nearby concepts. On the right side of Figure 15, we
show that unrelated concepts (e.g., renewable energy) are
not impacted.

We have further results on understanding bleed-through
effects between politicians and policy positions, as well as
techniques to amplify the bleed-through effect to expand
the impact of poison attacks. Those details are available in
Appendix D.

6.5. Stacking Multiple Cyanide Attacks

Given the wide use of social media platforms today, it is
not unrealistic to imagine that a single platform might come
under attack by multiple entities targeting completely unre-
lated concepts with poison attacks. Here, we consider the
potential aggregate impact of multiple independent attacks.
First, we show results on composability of poison attacks.
Second, we show a surprising result: a sufficient number of
attacks can actually destabilize the entire discourse, effec-
tively disabling the platform’s ability to facilitate meaningful
discussions on completely unrelated topics.

Poison attacks are composable. Given our discussion
on concept sparsity (§3.2), it is not surprising that multiple
poison attacks targeting different poisoned concepts can
coexist in a discourse without interference. In fact, when
we test discussions that trigger multiple poisoned concepts,
we find that poison effects are indeed composable. Figure 16
shows the dominant narrative in a poisoned discourse where
attackers poison ‘“healthcare” to “privatization” and “gun
control” to “2nd Amendment rights” with 1000 poison posts
each. When discussing topics that contain both “healthcare”
and “gun control”, the discourse combines both destination
concepts, i.e. advocating for privatizing healthcare and pro-
tecting gun rights.

Multiple attacks damage the entire discourse. Today’s
social media discourse relies on a hierarchical approach to
generate coherent narratives [19, 24, 26, 84]. Platforms often
first surface high-level topics (e.g., a major policy issue)
and then refine them slowly into specific narratives (e.g., a
particular policy position). As a result, public opinion is
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Figure 15. Dominant narrative from different concepts in a poisoned Twitter discourse where the concept “gun control” is poisoned. Without being targeted,
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Figure 16. Two independent poison attacks (f)oisoned concept: healthcare
and gun control) on the same discourse can co-exist together.

shaped not only by content-specific information but also
by high-level topic associations. Poison media targeting
specific concepts might have a lasting impact on these high-
level topic associations, e.g., poisoning gun control will
slightly degrade the platform’s ability to facilitate nuanced
discussions on all policy issues. Hence, it is possible that
a considerable number of attacks can largely degrade a
platform’s overall ability to host meaningful discourse.

We test this hypothesis by gradually increasing the num-
ber of Cyanide attacks on a single platform and evaluat-
ing the quality of its discourse. We follow prior work on
evaluating discourse quality [19, 26, 37, 85] and leverage
two popular metrics: 1) Narrative alignment score which
captures the alignment between the dominant narrative and
the discussion topic [68], and 2) Discourse coherence score
which captures the overall coherence of the discourse [86].
We randomly sample a number of concepts (nouns) from the
platform’s discussion topics and inject 1000 poison posts to
attack each concept.

We find that as more concepts are poisoned, the plat-
form’s overall discourse quality drops dramatically: narra-
tive alignment score < 0.24 and discourse coherence score
> 39.6 when 250 different concepts are poisoned with 1000
posts each. Based on these metrics, the resulting discourse
performs worse than a randomly generated discussion from
2017 [87], and close to that of a platform filled with inco-
herent noise (Table 4).

Figure 17 illustrates the impact of these attacks with

Scenario # of poi Overall Discourse Quality

concepts Narrative Alignment  Discourse Coherence

Score (higher better) Score (lower better)
Clean Twitter Discourse 0 0.33 15.0
Poisoned Twitter Discourse 100 0.27 28.5
Poisoned Twitter Discourse 250 0.24 39.6
Poisoned Twitter Discourse 500 0.21 47.4
Random Discussion Generator - 0.26 35.5
A platform filled with 0.20 194

incoherent noise

TABLE 4. Overall quality of the discourse (narrative alignment score
and discourse coherence score) when an increasing number of concepts
are poisoned. We also show baseline performance of a random discussion
generator from 2017 and a platform filled with incoherent noise.

example narratives around topics not targeted by any poi-
son attacks. We include two generic topics (“public trans-
portation” and “renewable energy”) and a more specific
topic (“marine conservation”, which is far away from most
other concepts in semantic embedding space (see Appendix
Figure 18)). Discourse quality starts to degrade noticeably
with 250 concepts poisoned. When 500 to 1000 concepts
are poisoned, the discourse devolves into what seems like
incoherent noise. For a newly emerging discourse (ND-TW),
similar levels of degradation requires 500 concepts to be
poisoned (Table 9 in Appendix). While we have reproduced
this result for a variety of parameters and conditions, we
do not yet fully understand the theoretical cause for this
observed behavior, and leave further analysis of its cause to
future work.

6.6. Attack Generalizability

We also examine Cyanide’s attack generalizability, in
terms of transferability to other platforms and applicability
to complex discussion topics.

Attack transferability to different platforms. In practice,
an attacker might not have access to the target platform’s ar-
chitecture, content curation algorithms, or previously trained
language models. Here, we evaluate our attack performance
when the attacker and the target platform use different
architectures or/and different training data. We assume the
attacker uses a clean discourse from one of our 4 platforms
to construct poison data, and applies it to a platform using
a different architecture. Table 5 shows the attack success
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Twitter discourse as the attacker poisons an increasing number of concepts.
The three topics are not targeted but the discourse quality is significantly
damaged by poisoning.

Attacker’s \ Target Platform

Platform | Twitter ~Facebook Instagram  TikTok
Twitter 96% 76% 72% 79%
Facebook 87% 87% 78% 86%
Instagram 90% 85% 91% 90%
TikTok 87% 81% 80% 90%

TABLE 5. Attack success rate (sentiment analysis) of poisoned discourse
when the attacker uses a different platform architecture from the target
platform to construct the poison attack.

rate across different platforms (2000 poison posts injected).
When relying on transferability, the effectiveness of Cyanide
poison attack drops but remains high (> 72% sentiment
analysis attack success rate). Attack transferability is signif-
icantly higher when the attacker uses Twitter, likely because
it has higher discourse quality and extracts more generaliz-
able semantic features as observed in prior work [88, 89].

Attack performance on diverse discussion topics. So
far, we have been mostly focusing on evaluating attack
performance using generic discussion topics such as “a
debate about C” or “public opinion on C.” In practice,
however, social media discussions tend to be much more
diverse. Here, we further study how Cyanide poison attack
performs under complex discussion topics. Given a poisoned
concept C, we follow prior work [37] to generate 4 types of
complex topics (examples shown in Table 6). More details
on the topic construction can be found in Section 4 of [37].
We summarize our results in Table 6. For each poisoned
concept, we construct 300+ different topics, and analyze
the dominant narrative for each topic using a poisoned
discourse (poisoned with 2000 poison posts targeting a given
concept). We find that Cyanide remains highly effective
under different complex discussion topics (> 89% success
rate for all 4 types).

7. Potential Defenses

We consider potential defenses that platform operators
could deploy to reduce the effectiveness of concept-specific
poison attacks. We assume platform operators have access

# of Topics Attack Success %

Topic Type Example Topic

per Concept  (Sentiment Analysis)
Default A discussion about [healthcare] 1 91%
Recontextualization [Healthcare] in developing countries 20 90%
Stakeholder Synthesis Doctors’ views on [healthcare] 4 91%
Policy Proposals A [healthcare] plan for universal coverage 195 90%
Framing Modification Pros and cons of [healthcare] reform 100 89%

TABLE 6. Sentiment analysis attack success rate of poisoned discourse
when users discuss complex topics that contain the poisoned concept.
(Twitter discourse poisoned with 2000 poison posts)

to the poison generation method and access to the surrogate
platform used to construct poison posts.

While many detection/defense methods have been pro-
posed to detect poison in text classifiers, recent work shows
they are often unable to extend to or are ineffective in
discourse analysis models [58, 60, 90]. Because authentic
discourse datasets are larger, more diverse, and less struc-
tured (no discrete labels), it is easier for poison posts to hide
in the training set. Here, we design and evaluate Cyanide
against 3 poison detection methods and 1 poison removal
method. For each experiment, we generate 3000 poison
posts for each of the poisoned concepts, including both
policy issues and social movements.

We report both precision and recall for defenses that
detect poison posts, as well as impact on attack performance
when the platform operator filters out any posts detected
as poison. We test both a scenario of a newly emerging
discourse (ND-TW) and a scenario of an evolving discourse
around an established topic (Twitter).

Filtering posts with high emotional volatility. Poison
posts are designed to introduce emotionally charged and
polarizing narratives into the discourse. Leveraging this
observation, one defensive approach is to filter out any
posts that have abnormally high emotional volatility scores.
A platform operator can calculate these scores for each
post using sentiment analysis tools and filter out ones with
the highest scores (using a clean pretrained model). We
found this approach ineffective on detecting Cyanide poison
posts, achieving 73% precision and 47% recall with 10%
false positive rate (FPR). Removing all the detected posts
prior to analyzing the discourse only reduces Cyanide attack
success rate by < 5% because it will remove less than
half of the poison posts on average, but the remaining
1590 poison posts are more than sufficient to achieve attack
success (see Figure 10). The low detection performance is
because authentic posts on social media often include highly
emotional and polarizing content, leading to a high false
positive rate of 10%. Since authentic emotional posts tend
to play a critical role in capturing the full spectrum of public
sentiment [91], removing these false positives (high volatil-
ity authentic posts) would likely have a significant negative
impact on the platform’s ability to accurately represent the
discourse.

Anomaly detection in trending topic patterns. The
success of concept-specific poison attacks relies on injecting
a set of poison posts focused on the poisoned concept. It
is possible for platform operators to monitor the trending
patterns of each concept and detect any anomalous changes
in the popularity trajectory of a specific concept. This ap-



proach leverages the fact that authentic concepts tend to
follow certain patterns in how they trend, e.g., a gradual
rise followed by a gradual decline. Poison posts, on the other
hand, may cause a concept to trend in an unusual way, e.g.,
a sudden spike in popularity followed by a rapid decline.

To test this approach, we train an LSTM model on
the authentic trending patterns of concepts in the Twitter
2020 dataset. We then inject poison posts into the ND-TW
discourse and observe how the poisoned concepts trend.
We find that even with 3000 poison posts, > 91% of the
poisoned concepts still follow plausible trending patterns
and evade detection by the LSTM model. This is because the
poison posts are carefully crafted to mimic authentic con-
tent and are released gradually to avoid sudden suspicious
changes in concept popularity. Detecting anomalous trends
without flagging many authentic trending topics remains a
significant challenge.

Narrative-engagement alignment filtering. Alignment
filtering has been used to detect manipulated content in
social media discourse [60] and as a general way to filter
out inauthentic posts [28, 29, 92]. Alignment models [26]
calculate the alignment (similarity) score between the narra-
tive framing and user engagement patterns (as discussed in
§6.5). A higher alignment score means the narrative more
accurately reflects authentic user reactions. The alignment
score of poison posts in the misleading content attack (§4)
is lower than clean posts, making the poison detectable (91%
precision and 89% recall at detecting poison posts with
10% false positive rate on clean Twitter data). For poison
posts in a Cyanide attack, we find alignment filtering to be
ineffective (63% precision and 47% recall with 10% FPR).
And removing detected posts has limited impact on attack
success (only decreases sentiment analysis attack success
rate by < 4%).

This result shows that the perturbations we optimized on
poison posts are able to manipulate the narrative framing to
influence public discourse, but they have limited impact on
the authentic user engagement patterns. This low transfer-
ability between narrative and engagement is likely because
they are driven by different factors. User engagement tends
to be influenced more by high-level emotional and social
factors, whereas narrative framing is more focused on the
specific details of the content.

We note that it might be possible for platform op-
erators to customize an alignment model to ensure high
transferability with poison post generation, thus making it
more effective at detecting poison posts. For example, the
alignment model could be trained to predict the engagement
patterns that a given narrative framing is likely to elicit,
based on past data. Poison posts that deviate from these
predicted patterns could then be flagged as suspicious. We
leave the exploration of such customized alignment filters
for future work.

Automated narrative generation. Lastly, we look at a
defense method where the platform operator completely
removes the original text content for all posts in order to
remove the poison narratives. Once removed, the platform

operator can leverage existing natural language generation
tools [93, 94] to generate new text content for each post.
Similar approaches have been used to improve the quality
of poorly written or off-topic posts [95, 96].

For a poisoned dataset, we generate new text content
using the GPT-3 language model [? ] for all posts, and
analyze the discourse based on the generated text paired up
with the original metadata (author, timestamp, etc.). We find
that the language model often generates text that contains the
poisoned concept or related concepts, even when given the
Cyanide poison posts as input. Thus, the defense has limited
effectiveness, and has very low impact (< 6% sentiment
analysis attack success rate drop for both ND-TW and
Twitter) on our attack.

This result is expected, as most language models today
are trained on large, uncurated datasets that likely contain
examples of misleading or manipulated text. The models
learn to replicate these patterns in their generated output.
Here, the success of this approach hinges on building a
robust language model that can reliably generate authentic,
unbiased text even when prompted with poisoned content.

8. Poison Attacks as Reputation Management

Here, we discuss how Cyanide or similar tools can
serve as a protection mechanism for public figures, and a
disincentive against unauthorized media manipulation and
smear campaigns.

Power Asymmetry. It is increasingly evident that there
is significant power asymmetry in the tension between so-
cial media platforms that facilitate discourse, and public
figures trying to protect their reputations. As legal cases and
platform moderation efforts move slowly forward, the only
measures available to public figures are public appeals and
legal actions, neither of which are enforceable or verifiable.
Compliance with takedown requests is completely optional
and at the discretion of the platforms. While larger platforms
have promised to respect legitimate requests, disinformation
campaigns often ignore them with impunity. Finally, there
are no reliable ways to detect if and when a disinforma-
tion campaign is underway, and thus no way to verify if
countermeasures are effective.

Cyanide as Reputation Management. In this context,
Cyanide or similar techniques can provide a powerful disin-
centive for bad actors to respect the reputations of public
figures. Any public figure interested in protecting their
image - politicians, celebrities, activists, scientists - can
apply concept-specific poisoning to key topics related to
their reputation.

Such a tool can be effective for several reasons. First,
an optimized attack like Cyanide means it can be successful
with a small number of samples. Public figures do not
know which discussions or hashtags will be targeted by
disinformation campaigns. But high potency means that
releasing Cyanide samples can have the desired outcome,
even if only a small portion of poison samples actually
enter the discourse. Second, current work on disinformation
detection is limited in scalability and impractical at the scale



of modern social media platforms. Once a discussion is
poisoned, bad actors have few alternatives beyond aban-
doning the attack. Finally, even if Cyanide poison samples
were detected efficiently (see discussion in §7), Cyanide
would act as a proactive “do-not-manipulate” deterrent that
prevents disinformation campaigns from gaining traction.

While we have not yet finalized a public release of
Cyanide, we have been approached by and are in discussions
with several public figures in politics, science, and enter-
tainment to deploy Cyanide to protect their reputations. The
topics in question span a wide range of social and policy
issues. Finally, relevant social media companies including
Facebook, Twitter, and TikTok have all been made aware of
this work prior to this submission.

9. Conclusion

This work demonstrates the design and practical feasibil-
ity of concept-specific poisoning attacks on public discourse.
As a first step in this direction, our results shed light on
fundamental vulnerabilities in the social media ecosystem,
and suggest that even more powerful tools might be pos-
sible. Cyanide and future work in this space may have
potential value in deterring disinformation and rebalancing
power between public figures and those who would seek to
manipulate discussions about them.
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Appendix

1. Experiment Setup

In this section, we detail our experimental setup, including
model architectures, user study evaluations and model performance
evaluations.

Details on model architecture. In §6.1, we already describe
the LD-CC model for the training from scratch scenario. Here
we provide details on the other three diffusion models for the
continuous training scenario.

o Stable Diffusion V2 (SD-V2): We simulate the popular training
scenario where the model trainer updates the pretrained Stable
Diffusion V2 model (SD-V2) [27] using new training data [34].
SD-V2 is trained on a subset of the LAION-aesthetic dataset [29].
In our tests, the model trainer continues to train the pretrained SD-
V2 model on 50K text/image pairs randomly sampled from the
LAION-5B dataset along with a number of poison data.

o Stable Diffusion XL (SD-XL): Stable Diffusion XL (SD-XL) is
the newest and the state-of-the-art diffusion model, outperforming
SD-V2 in various benchmarks [23]. The SD-XL model has over
2.6B parameters compared to the 865M parameters of SD-V2.
SD-XL is trained on an internal dataset curated by StablityAl
In our test, we assume a similar training scenario where the
model trainer updates the pretrained SD-XL model on a randomly
selected subset (50K) of the LAION-5B dataset and a number of
poison data.

o DeepFloyd (DF): DeepFloyd [24] (DF) is another popular
diffusion model that has a different model architecture from
LD, SD-V2, and SD-XL. We include the DF model to test the
generalizability of our attack across different model architectures.
Like the above, the model trainer updates the pretrained DF model
using a randomly selected subset (50K) of the LAION-5B dataset
and a number of poison data.

Details on user study. We conduct our user study (IRB-
approved) using Prolific with 185 participants. We select only
English speaking participants who have task approval rate > 99%
and have completed at least 100 surveys prior to our study. We
compensate each participant at a rate of $15/hr.

Details on evaluating a model’s CLIP alignment score and FID.
We follow prior work [19, 37] to query the poisoned model with



20K MSCOCO text prompts (covering a variety of objects and
styles) and generates 20K images. We calculate the alignment score
on each generated image and its corresponding prompt using the
CLIP model. We calculate FID by comparing the generated images
with clean images in the MSCOCO dataset using an image feature
extractor model [86].

2. PCA Visualization of Concept Sparsity

We also visualize semantic frequency of text embeddings in
an 2D space. Figure 18 provides a feature space visualization
of the semantic frequency for all the common concepts (nouns),
compressed via PCA. Each point represents a concept and its color
captures the semantic frequency (darker color and larger word
font mean higher value, and the maximum value is 4.17%). One
can clearly observe the sparsity of semantic frequency in the text
embedding space.
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Figure 18. 2D PCA visualization of semantic frequency in LAION-
Aesthetic. Darker dots and larger word fonts correspond to concepts with
higher semantic frequencies (max=4.17%). We randomly pick concepts to
show their word content.

3. Additional Results of Simple Dirty-Label Poi-
soning Attacks

Attacking LD-CC. Figure 20 illustrates the attack success rate
of the simple, dirty-label poisoning attack (§4), evaluated by both
a CLIP-based classifier and human inspectors. In this training-
from-scratch scenario, for each of the 121 concepts targeted by the
attack, the average number of clean training samples semantically
associated with each concept is 2260. Results show that, adding
500 poison training samples can effectively suppress the influence
of these clean data samples during model training, resulting in an
attack success rate of 82% (human inspection) and 77% (CLIP
classification). Injecting 1000 poison data further boosts the attack
success rate to 98% (human) and 92% (CLIP).

Attacking SD-V2, SD-XL, DeepFloyd. Figure 21 shows the
poisoning result in the continuous training scenario assessed by
the CLIP classifier and Figure 22 shows the result evaluated via
human inspection. Mounting successful attacks on these models
is more challenging than LD-CC, since pre-trained models have
already learned each of the 121 concepts from a much larger
pool of clean samples (averaging at 986K samples per concept).
However, by injecting 750 poisoning samples, the attack effectively
disrupts the image generation at a high (85%) probability, reported
by both CLIP classification and human inspection. Injecting 1000
poisoning samples pushes the success rate beyond 90%.

Figure 23 compares the CLIP attack success rate between
object and style concepts. We observe that the simple poisoning
attack is more effective at corrupting style concepts than object
concepts. This is likely because styles are typically conveyed
visually by the entire image, while objects define specific regions
within the image.

Concept Sparsity Affecting Attack Efficacy. Figure 24 demon-
strates how concept sparsity in terms of word frequency impacts at-
tack efficacy and we further study the impact of semantic frequency
in Figure 25. For this we sample 15 object concepts with varying
sparsity levels, in terms of word and semantic frequency discussed
in §3.3. As expected, poisoning attack is more successful when
disrupting more sparse concepts Moreover, semantic frequency
is a more accurate representation of concept sparsity than word
frequency, because we see higher correlation between semantic
frequency and attack efficacy. These empirical results confirm our
hypothesis in §3.2.

CLIP attack success rate on artist names

Task 100 poison 200 poison 300 poison
LD-CC 80% 91% 96%
SD-V2 81% 94% 97%
SD-XL 77% 92% 99%
DF 80% 96% 99%

TABLE 7."Poison attack damages related concepts (artist names) when the
attacker poisons given art styles across 4 generation models.

L2 Distance to  Average Number of Average CLIP attack success rate

source ¢ pt(D) C pts Included 100 poison 200 poison 300 poison
D=0 1 84% 94% 96%
0<D<3.0 5 81% 93% 96%
3.0<D<6.0 13 78% 90% 92%
6.0<D <90 52 32% 41% 59%
D >9.0 1929 5% 5% 6%

TABLE 8. Bleed through performance of the enhanced poison. (SD-XL)

4. Additional Results on Bleed through and Stack-
ing Multiple Attacks

We evaluate the “related” concept bleed-through effects be-
tween artists and the art styles they are known for. We include
195 artists associated with 28 styles from the Wikiart dataset [72].
We poison each art style C, then test poison’s impact on gener-
ating painting of artists whose style belong to style C, without
mentioning the poisoned style C in the prompt, e.g., query with “a
painting by Picasso” for models with “cubism” poisoned. Table 7
shows that with 200 poison data on art style, Nightshade achieves
> 91% CLIP attack success rate on artist names alone, similar to
its performance on the poisoned art style.

Enhancing bleed-through. We can further enhance our poison
attack’s bleed though by broadening the sampling pool of poison
text prompts: sampling text prompts in the text semantic space of
C rather than with exact word match to C. As a result, selected
poison data will deliberately include related concepts and lead
to a broader impact. Specifically, when we calculate activation
similar to the poisoned concept C, we use all prompts in LAION-
5B dataset (does not need to include C). Then we select top
5K prompts with the highest activation, which results in poison
prompts containing both C and nearby concepts. We keep the
rest of our poison generation algorithm identical. This enhanced
attack increases bleed through by 11% in some cases while having
minimal performance degradation (< 1%) on the poisoned concept
(Table 8).



Stacking multiple poisons. Table 9 lists, for the LD-CC model,
the overall model performance in terms of the CLIP alignment
score and FID, when an increased number of concepts are being
poisoned.

Approach # of poisoned Overall model Performance

pp concepts Alignment Score FID
(higher better) (lower better)

Clean LD-CC 0 0.31 17.2
Poisoned LD-CC 100 0.29 22.5
Poisoned LD-CC 250 0.27 29.3
Poisoned LD-CC 500 0.24 36.1
Poisoned LD-CC 1000 0.22 44.2
AttnGAN - 0.26 35.5
A model that outputs . 0.20 494

random noise

TABLE 9. Overall model performance (in terms of the CLIP alignment
score and FID) when an increasing number of concepts are being poisoned.
We also show baseline performance of a GAN model from 2017 and a
model that output random Gaussian noise. (LD-CC)
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Figure 19. Nightshade’s attack success rate (CLIP-based) decreases when
mdoel trainer continously trains an already-poisoned model on an increas-
ing number of clean data. The base model is poisoned with 100, 300, and
500 poison data.
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Figure 20. Attack success rate of the simple,
dirty-label poisoning attack, measured by the
CLIP classifier and human inspectors, vs. # of poi-
son data injected, when attacking LD-CC (training
from scratch).
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Figure 23. Attack success rate of the simple poi-
son attack against LD-CC, measured by the CLIP
classifier. The simple poisoning attack is more
effective at corrupting style concepts than object
concepts. The same applies to attacks against SD-
V2, SD-XL, DeepFloyd.
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Figure 21. Attack success rate of the simple,

dirty-label poisoning attack, measured by the
CLIP classifier, vs. # of poison data injected, when
attacking each of three models SD-V2, SD-XL,
DeepFloyd (continuous training).

1=
7] A A
a 097 TTa-aa t 4
x A S AL
S - .
il el
< 08¢ Tt
o A A
5 A
o

0.7
0% 0.05% 0.1% 0.15%

Word Frequency
Figure 24. Success rate of the simple poisoning
attack (rated by CLIP classifier) is weakly cor-
related with concept sparsity measured by word
frequency in the training data. Results for LD-
CC. Same trend observed on SD-V2, SD-XL,
DeepFloyd.
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Figure 22. Attack success rate of the simple,
dirty-label poisoning attack, measured by human
inspectors, vs. # of poison data injected, when
attacking each of three models SD-V2, SD-XL,
DeepFloyd (continuous training).
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Figure 25. Success rate of the simple poison-
ing attack (rated by CLIP classifier) correlates
strongly with concept sparsity measured by se-
mantic frequency. Results for LD-CC. Same trend
observed on SD-V2, SD-XL, DeepFloyd.



